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Abstract. The model of long-range interatomic interactions is found to reveal a number of new
features, closely connected with the substrate potential shape parameters. The phase trajectories,
as well as an analytical analysis, provide information on a disintegration of solitons upon reaching
some critical values of the lattice parameters. An implicit form for two classes of these topological
solitons (kink) is calculated exactly.

In the last few years, a great amount of attention has been devoted to the dynamics and
thermodynamics of the nonlinear one-dimensional (1D) lattices with long-range interaction
(LRI) potential [1–8]. This attention has been motivated by the fact that, in real materials,
the interactions between particles are more complicated and extend further than the nearest-
neighbour interactions, for instance, in ferroelectric chains and in adsorption systems where
adatomic charges create coulomb repulsion forces, dipole–dipole interaction and direct or
indirect interaction [7]. Also, it is an alternative approach to treat the problem of phase
transition in most of the condensed matter systems besides the approach which consists of
considering the two- or three-dimensional nature of the system [1].

Among the various types of LRI potential (power-law interaction [3, 7], Lennard-Jones
long-range coupling [2] and exponential interaction such as Kac–Baker potential [8]), a well
studied example is the Kac–Baker LRIs in which the interaction between particles falls off
exponentially as the separation distance between them increases. However, the rigorous
applicability remains limited, since it is unlikely that real physical condensed matter systems
will be ‘exactly’ described by potentials with defined shapes [1, 4]. All these studies ignored
the fact that the shape of the nonlinear one-site potential may deviate considerably from that
attributed to the local potential. For example, in H/W (hydrogen atoms adsorbed on a tungsten
surface), the shape of the substrate potential deviates from the sine–Gordon (sG) potential [7].

It is the main purpose of this letter to present briefly the results concerning two classes of
implicit form of topological or kink solitons in the Remoissenet–Peyrard (RP) model [9] with
the Kac–Baker LRI potential. We demonstrate that the competition between the shapes and
long-range parametersr leads to some qualitatively new effects. Among these effects, absent
from the sG model with the Kac–Baker LRIs [4], one should note the disintegration of the
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solitons for ‘effective substrate potential amplitudes’, exceeding some critical threshold value,
as well as the dependence ons of these nonlinear excitations.

We consider a system of ions of massm placed in an infinite 1D lattice of spacingb. The
Hamiltonian is given by

H =
∑
i

(m/2)u̇2
i +

∑
i

∑
j 6=i
(Vij /2)(ui − uj )2 +

∑
i

V0VRP (2πui/as, s) (1)

whereui and u̇i denote the position and the velocity of theith ion, respectivelyas andV0

are respectively the period and the amplitude of the substrate potential. Theith ion and
j th ion are assumed to interact harmonically with elastic coupling constant coefficientVij
of the Kac–Baker formVij = [C(1 − r)/2r]r |i−j |, where |i − j | measures the absolute
distance between the two sitesi andj and the parametersr andC are respectively the range
of interactions with 06 r < 1 and the elastic constant of the lattice. For a givenr, Vij
decreases whenj increases. Experimentally, one can relate the parameterr to the number of
neighbouring interactions. Note that the limitr → 0 reduces to the nearest-neighbour problem
and the limitr → 1 defines the infinite-range problem. In the latter case, also known as the
Van der Waals limit, the system may exhibit a phase transition at a finite temperature [1]. We
focus our attention on the one-site RP potential [9]

VRP (2πui/as, s) = (1− s)2 1− cos(2πui/as)

1 + s2 + 2s cos(2πui/as)
|s| < 1 (2)

wheres is the shape parameter. This potential reduces to the sG potential in the limit ofs → 0.
In the adsorption system, the expression of a frequency of oscillations of an isolated particle at
the bottom of the substrate potential isωs = ω0(1−s)/(1+s), whereω0 = (2π/as)(V0/m)

1/2.
With the help of the expression forωs , it is more reliable to determine the parameters directly
from experimental data using the measured values ofV0 (activation energy of a particle),as ,
m andωs . Estimates for e.g. H/W and Li/W adsystems yield−0.3 and−0.2, respectively.
For the sake of simplicity, we define the quantitiesM = m(as/2π)2, k = C(as/2π)2 and the
dimensionless displacementθi = 2πui/as , so that the Hamiltonian (1) can be rewritten as

H =
∑
i

1

2
Mθ2

i +
∑
i

∑
j 6=i

k(1− r)
2r

r |i−j |(θi − θj )2 +
∑
i

V0VRP (θi, s). (3)

The equation of motion forθi which follows from (3) is

Mθ̈i + V0 dVRP (θi, s)/dθi + 2kθi = Li Li = k(1− r)
r

∑
j 6=i

r |i−j |θj (4)

where the auxiliary quantityLi satisfies the recursion relation

Li+1 +Li−1 = (r + (1/r))Li − k(1− r)
r

(θi+1 + θi−1− 2θi). (5)

Now, we go to the continuum limit, where the approximationθi(t) → θ(x, t) and
Li(t)→ L(x, t) can be used withx = ib. A Taylor expansion of variables with indices
i + 1 andi − 1 around variables of indexi, to the second order, transforms equation (5) into
the nonlinear partial equation. When we look for solutions in the form of travelling waves
θ(x, t) = θ(x − vt) with constant velocityv, it reduces to

θyy + σ(r)(V ′RP (θ, s))yy = V ′RP (θ, s) (6)

with y = (x − vt)/ξ(r), where

ξ(r)2 = ξ2
0 (r)[1− (v2/C2

0(r))] σ(r) = σ0(r)/[1− (v2/C2
0(r))]. (7)
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with

σ0 = V0/k ξ2
0 = kb2/V0 C2

0 = kb2/M

σ0(r) = σ0r/(1 + r) ξ2
0 (r) = ξ2

0 (1 + r)/(1− r)2 C2
0(r) = C2

0(1 + r)/(1− r)2.
(8)

The subscriptsy and the prime stand for the derivative with respect toy andθ , respectively. The
LRI dependent parameterσ(r) plays the role of an ‘effective substrate potential amplitude’
while ξ0(r) andC0(r) are the characteristic length of the system and the sound velocity,
respectively. The solutions of equation (6) can be best analysed in the phase plane(θ, θy).
Thus, this equation can be treated as an autonomous dynamic system where the first integral
is given by

θ2
y =

2VRP (θ, s) + σ(r)[V ′RP (θ, s)]
2 + K̃

(1 +σ(r)V ′′RP (θ, s))2
(9)

whereK̃ is an integration constant. It is clear from equation (9) that the system exhibits
two equilibrium points(θ, θy) = (0, 0) and(π, 0) characteristic for the classical sG systems.
Figure 1 shows the phase trajectories of the system for three fundamental types of result.
In figure 1(a), one encounters the classical closed (K̃ < 0) and open (̃K > 0) trajectories
corresponding to periodic waves of constant sign (nonlinear oscillations in the potential well)
and alternating-sign periodic waves. The separatrix (K̃ = 0) with corresponds to a single
soliton is a solid line for allθ ∈ [0, 4π ].

Whenσ(r) increases upon reaching some critical valueσc, the phase portrait changes
qualitatively. The two fixed points are still present but one encounters the close trajectories
aroundπ where the amplitude is limited by the singular pointsθs2 (see figure 1(b)). In the case
s > 0, this motion is reduced to a fixed point (π, 0) corresponding to a potential well. In both
cases (s > 0 ands < 0), we notice the absence of the separatrix indicating the breakdown of
the solitons. This situation is justified by the existence of the singular points in the vicinity of
whichθy tends to infinity. The exact position of these new special points may be derived from
the singularity arising in the denominator of equation (9). Evidently, their existence causes the
destruction of the solitons. It should disappear if the effective depth of the substrate potential
is σ(r) < σc, with

σc = − (α
2 + γ 2)

α2(1 +γ 2)
(α2 + 3(α2 − 1)γ 2 − γ 4) for s < 0 σc = α2 for s > 0 (10a)

where

γ 2 = (3− 8α2 + 3α4) + (9α8− 24α6 + 30α4 − 24α2 + 9)1/2

2(3α2 − 2)
α = (1− |s|)/(1 + |s|).

(10b)

Figure 2 shows the variation ofσc with the deformable parameters. Below the critical value
σc (0 6 σ(r) 6 σc), corresponding to area I, a kink exists, and above this value (area II) no
kinks whatsoever may exist. Also, for each value ofξ0, r, there exists a boundary in thev and
s plane and trespassing over this boundary causes the destruction of the solitons since, from
equation (10), the limiting valuevc of the kink velocity isvc = C0(r)(1− σ(r)/σc)1/2. For
example forσ0 ' 1 andr = 0.1, vc ' 0.3C0 for s = 0.5 andvc ' 0.01C0 for s = 0.6. This
means that for|s| < 0.6 no kinks may exist even at very low velocity.

Following the preceding investigations, forσ(r) < σc, the system exhibits soliton
solutions. Now, we confine our attention to the caseK̃ = 0 which describes solitons which
play an important role in the dynamics of the system. The solutions which correspond to
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(a)

(b)

Figure 1. Phase trajectories in two periods of the substrate potential for the deformable parameters
s = −0.5 for (a)σ(r) = 0 and (b)σ(r) = 0.1, in unitsθ/2π , according to equation (9).

kinks verify the following classical boundary conditions:θy → 0, θ → (2π, 0) asy →±∞.
Then, from equation (9) one can obtain after some lengthy algebra two families of implicit
kink solutions

(Z1− Z2)
1/2(y − y0) = sgn(θ − π){[D1 + (A1/Z3) + (B1/(1 +Z3))

+(C1/(α
2 +Z3))]F(ν, q)− [(A1/Z3)π(ν,−Z3/(Z1− Z3), q)

+(B1/(1 +Z3))π(ν, (−1− Z3)/(Z1− Z3), q)

+(C1/(α
2 +Z3))π(ν, (−α2 − Z3)/(Z1− Z3), q)]} (11a)

for −1< s 6 0 and

(Z′1− Z′2)1/2α4(y − y0) = sgn(θ − π){[D′1 + (A′1/Z
′
3) + (B ′1/(1 +Z′3))

+(C ′1/(1 +α2Z′3))]F(µ, p)− [(A′1/Z
′
3)π(µ,−Z′3/(Z′1− Z′3), p)

+(B ′1/(1 +Z′3))π(µ, (−1− Z′3)/(Z′1− Z′3), p)
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Figure 2. Variation of the critical effective substrate potential amplitude as a function of the
deformable parameters.

+(C ′1/(1 +α2Z′3))π(µ, (−1− α2Z′3)/(Z
′
1− Z′3), p)]} (11b)

for 06 s < 1, with

ν = tan−1((Z1− Z3)/(tan2(θ/2)− Z1))
1/2 q = ((Z2 − Z3)/(Z1− Z3))

1/2

A1 = α2(σ (r) + α2) B1 = −(1− α2)2 C1 = −4α2σ(r)(1− α2)

D1 = 1− α2σ(r) (12a)

and

µ = tan−1((Z′1− Z′3)/(tan2(θ/2)− Z′1))1/2 p = ((Z′2 − Z′3)/(Z′1− Z′3))1/2
A′1 = (1 +α2σ(r)) B ′1 = −(1− α2)2 C ′1 = 4α2σ(r)(1− α2)

D′1 = α4(α2 − σ(r)) (12b)

whereF andπ are the first and third elliptic integrals, respectively andZ1, Z2 andZ3 verify
the following equation

Z3 + α2(3 +σ(r)α2)Z2 + α4(3 + 2σ(r))Z + α4(α2 + σ(r)) = 0

whileZ′1, Z′2 andZ′3 verify

α6Z3 + α2(3α2 + σ(r))Z2 + α2(3 + 2σ(r))Z + (1 +α2σ(r)) = 0.

Note thatZ1 > Z2 > Z3 andZ′1 > Z′2 > Z′3. The antikink solutions are obtained by replacing
θ by (2π − θ ) in equations (11) and (12). Asr → 0 (σ (r)→ 0), equations (11a) and (11b)
reduce to the form of the RP soliton [9] while ass → 0 they reduce to the sG kink with LRIs
[4].

From equation (9) the spatial extension of the kink (pseudo-kink width) is given by

Lk = ξ(r)α/(1 +σ(r)α2)1/2 for − 1< s 6 0

Lk = ξ(r)/(α2 + σ(r))1/2 for 06 s < 1. (13)

As r → 0,Lk reduces toLk = ξ0α for−1< s 6 0 andLk = ξ0/α for 06 s < 1. Fors < 0,
this width increases withr for all values ofs and slightly decreases in the range 06 r 6 0.2
for s > 0, and the soliton slowly disappears asr → 1. This is shown in figure 3(a) whereθ is
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(a)

(b)

Figure 3. (a) The soliton profileθ(y/ξ0) for various values of the shape parameters. (b) The
soliton creation energy, plotted in units of the sG soliton energyEsG = 8b(kV0)

1/2, versusr, for
a fews.

plotted againsty (with v = 0) for various values of the LRIs’ parameterr and the deformable
parameters.

We now look for the calculation of the soliton energy. For this aim, we use the auxiliary
quantityLi and equation (3) and go to the continuum limit. Then, using equation (9), the total
energy of the system (soliton energy) can be written in the more suggestive form as

Es = Ep +Ek = I1(2Mv2 + ξ2(r)V0)/(2bξ(r)) + I2σ(r)ξ(r)V0/2b + I3V0ξ(r)/b (14)

with

I1 =
∫ 2π

0
dθ(2VRP (θ, s) + σ(r)[V ′RP (θ, s)]

2)1/2(1 +σ(r)V ′′RP (θ, s))
−1

I2 =
∫ 2π

0
dθV ′′RP (θ, s)(2VRP (θ, s) + σ(r)[V ′RP (θ, s)]

2)1/2(1 +σ(r)V ′′RP (θ, s))
−1 (15)

I3 =
∫ 2π

0
dθVRP (θ, s)(1 +σ(r)V ′′RP (θ, s))(2VRP (θ, s) + σ(r)[V ′RP (θ, s)]

2)−1/2

where we have made use of the fact thaty(+∞) = 2π andy(−∞) = 0. The first obvious
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remark is that the integralsI1, I2 andI3 are analytically intractable for the potentialVRP (θ, s).
However in the limits → 0 (sG potential), the calculation is possible and reduces to that
obtained in the sG potential with LRIs [4]. To find the energy of the soliton in the whole
range of interaction 06 r < 1 and for all values of the deformable parameter−1 < s < 1,
we have integrated equation (15) numerically. The results are shown in figure 3(b) for a few
values of the deformable parameter. It is seen thatEs is an increasing function of the range of
interaction for all values ofs. In the limit r → 1,Es goes to infinity. It seems very likely that
this state is energetically less favourable for the existence of the soliton since all the particles
sit at the top of the potential well. Note that, in this model, three facts contribute to lower the
kink energy: first, an increase in the coupling (σ0� 1); second, a potential with a sufficiently
flat bottom (s → 1), like an RP system, and third a decrease in the long-range parameter.
Nevertheless, the two first cases correspond to very large kinks. SinceEs corresponds to the
energy of creation of the soliton, this result suggests that, physically, kinks would be more
easily created in systems where the potentials have flat bottoms (s > 0) and small LRIs.

In this paper the RP model with long-range effect interactions between the ions of the
chain is shown to give some qualitatively new results arising from the deformability of the
substrate potential shape, such as the appearance of a new type of phase trajectory and the
breakdown of conventional solitons. Also, another effect is related to a transition from open to
closed phase trajectories of the system taking place beyond some threshold values of the lattice
parameters and/or the velocity of the soliton propagation. An exact analytical expression for
the dependence of the breakdown threshold value on the shape parameter of the RP potential,
on the LRIs’ parameter and on the velocity of the kinks has been derived. It is shown that
these new features stem from the deformability of the shape of the substrate potential and,
therefore, that they should be encountered in real systems. Our analysis shows that the shape
of the substrate potential is of great importance for modelling nonlinear systems particularly
when the LRIs are involved. Thermodynamic and transport properties of the model, which
is the extension of the short-range model [10, 11], are now in progress and the results will be
presented in the near future.
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